Flow Induced by Bacterial Carpets and Transport of Microscale Loads

نویسنده

  • Amy Buchmann
چکیده

Microfluidics devices carry very small volumes of liquid though channels and have been used in many biological applications including drug discovery and development. In many microfluidic experiments, it would be useful to mix the fluid within the chamber. However, the traditional methods of mixing and pumping at large length scales don't work at small length scales. Recent experimental work has suggested that the flagella of bacteria may be used as motors in microfluidics devices by creating a bacterial carpet [1]. Mathematical modeling can be used to investigate this idea and to quantify flow induced by bacterial carpets. I will introduce the method of regularized stokeslets [2] and show how this can be implemented to model fluid flow above bacterial carpets and the transport of microscale loads. Model validation and preliminary results will be presented. [1] N. Darnton, L. Turner, K. Breuer, and H. Berg, Moving fluid with bacterial carpets, Biophys. J., 86 (2004), pp. 1863-1870. [2] R. Cortez, The method of regularized stokeslets, SIAM J. Sci. Comput., 23 (2001), p. 1204. Title:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualization of flagellar interactions on bacterial carpets.

Methods for the in-depth study of the physics of microscale actuation of microfluidics environments by flagellated bacteria 'teamsters' have been developed. These methods, which include single and multi-colour fluorescent labelling and electron microscopy allow for the analysis of the effect that individual flagellar filaments have on bacterially driven microstructures, and allow for the invest...

متن کامل

Uncertainties in Evaluation of the Sediment Transport Rates in Typical Coarse-Bed Rivers in Iran

Flow and sediment transport processes are different and more complex in coarse-bed rivers than in sand-bed rivers. The main goal of the present study is to evaluate different modes of sediment transport using different hydrometric and hydraulic methods, and to address the major uncertainties. Four river reaches were selected as representatives of coarse-bed rivers in the Northwest of Iran. A se...

متن کامل

Study on Thermal and Hydrodynamic Indexes of a Nanofluid Flow in a Micro Heat Sink

The paper numerically presents laminar forced convection of a nanofluid flowing in a duct at microscale. Results were compared with both analytical and experimental data and observed good concordance with previous studies available in the literature. Influences of Brinkman and Reynolds number on thermal and hydrodynamic indexes have been investigated. For a given nanofluid, no change in efficie...

متن کامل

A microscale model of bacterial and biofilm dynamics in porous media.

A microscale model for the transport and coupled reaction of microbes and chemicals in an idealized two-dimensional porous media has been developed. This model includes the flow, transport, and bioreaction of nutrients, electron acceptors, and microbial cells in a saturated granular porous media. The fluid and chemicals are represented as a continuum, but the bacterial cells and solid granular ...

متن کامل

Predictive models for evaluation of mesophilic and psychrophilic bacterial loads in muscles of fresh ice-stored silver pomfret by impediometric technique

Current microbial methodologies to determine fish quality are laborious and have long time required to obtain results. The impediometric technique as a rapid sensitive method was used to determine the correlation between impedance detection times (IDTs) and conventional reference psychrophilic and mesophilic plate counts of fish in order to develop models for predicting the microbial quality an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014